
A New Approach to Feedback for Robust Signaling
Gradients

By T. Kushner, A. Simonyan, and F. Y. M. Wan

The patterning of many developing tissues is orchestrated by gradients of
morphogens through a variety of elaborate regulatory interactions. Such
interactions are thought to make gradients robust, that is, resistant to changes
induced by genetic or environmental perturbations; but just how this might be
done is a major unanswered question. Recently extensive numerical simulations
suggest that robustness of signaling gradients cannot be attained by negative
feedback (of the Hill’s function type) on signaling receptors but can be achieved
through binding with nonsignaling receptors (or nonreceptors for short) such
as heparan sulfate proteoglycans with the resulting complexes degrading after
endocytosis. These were followed by a number of analytical and numerical
studies in support of the aforementioned observations. However, evidence of
feedback regulating signaling gradients has been reported in literature. The
present paper undertakes a different approach to the role of feedback in
robust signaling gradients. The overall goal of the project is to investigate the
effectiveness of feedback mechanisms on ligand synthesis, receptor synthesis,
nonreceptor synthesis, and other regulatory processes in the morphogen gradient
system. As a first step, we embark herein a proof-of-concept examination of a
new spatially uniform feedback process that is distinctly different from the
conventional spatially nonuniform Hill function approach.

1. Introduction
In the early stage of biological development, cells receive positional information,
usually from spatially distributed, signaling-receptor bound morphogens, to
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adopt different fates resulting in tissue patterning. Morphogens (aka ligands)
such as Decapentaplegic (Dpp) in a Drosophila wing imaginal disc are
secreted signaling molecules synthesized (often at a localized source) and
transported downstream (e.g., by active or passive diffusion) for binding with
signaling receptors (such as Thickvein [Tkv] for Dpp) to form signaling spatial
gradients. Graded differences in receptor occupancy at different locations
underlie the signaling differences that ultimately lead cells down different paths
of development [1–3].

An important requirement for signaling morphogen gradients is to produce
patterns that are not easily altered by genetic or epigenetic (such as
environmental) fluctuations. The insensitivity of a system’s output to variations
in input or system parameters is often termed robustness . How this requirement
is met has been the subject of a number of recent studies [4–11]. Understanding
how robustness is attained is important not only to shed light on the reliability
of developing systems, but also to help explain the ubiquitous presence of
elaborate regulatory schemes in morphogen systems.

Formation of concentration gradients of signaling morphogen–receptor
complexes (signaling gradients for short) is expected to be affected by other
known ligand activities including binding with molecular entities (such as
heparan sulfate proteoglycans) other than signaling receptors. Such nonsignaling
entities are called nonreceptors because they bind with morphogens but the
resulting bound morphogen complexes do not signal. As such, the presence of
nonreceptors reduces the amount of morphogens available for binding with
signaling receptors and thereby inhibits or downregulates cell signaling. Effects
of nonreceptors have been examined briefly in [12] where we extend a simplest
wing disc morphogen model of [13,14] to include the possibility of morphogens
binding with a certain kind of cell-surface nonreceptor to investigate their
inhibiting effects on the formation and properties of steady-state signaling
gradients.

Available experimental results carried out by S. Zhou in A.D. Lander’s
lab (see also [15]) show that Dpp synthesis rate doubles when the ambient
temperature is increased by 6◦C. With such an increase in Dpp synthesis
rate, the simple models developed in [13, 14, 16, 17] would predict signaling
gradients qualitatively different from that at the lower ambient temperature.
Yet, little abnormality in the development of the wing imaginal disc is observed
under such a change of ambient temperature (see also [10, 16]). In effect,
ligand-mediated patterning of the Drosophila wing is substantially robust to a
significant increase in synthesis rate. On the other hand, modification of models
to include a feedback loop in which receptor synthesis rate is downregulated
by an increase in signaling morphogen concentration was found not to lead to
robustness [18, 19, 11]. This suggests different types of feedback mechanisms
are probably at work. Two novel strategies for achieving robustness were
identified in [19]; both involve cell surface nonreceptors mediating a large
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portion of overall morphogen degradation. That nonreceptors provide a vehicle
to robust signaling in the presence of an enhanced ligand synthesis rate was
shown computationally for a portion of the 106 biologically realistic sets
of parameter values in a six-dimensional parameter space [19]. Subsequent
investigations, for example [18, 11, 20], validated the two major findings of
[19]: (i) A Hill function-type negative feedback on receptor synthesis rate
alone does not lead to robustness, and (ii) robustness may be achieved by
a sufficient level of nonreceptor-mediated degradation and enhanced by the
same feedback process.

Empirical evidence exists showing that nonreceptors constitute a possible
mechanism for downregulating morphogen signaling. Introduction of noggin
(NOG) leads to the blocking of endogenous BMP signaling [21–23] and the
presence of BMP inhibitor chordin (Chd) antagonizes BMP signaling by blocking
binding to their receptors [24, 25] are but only two examples. Other known
inhibitors include follistatin (FST, which binds BMP-7 and BMP-2 reversibly)
[26–28] (see also [29]) and Short Gastrulation (Sog, which binds directly with
Dpp, see [30] and references therein). However, there are also inhibitors of
morphogen signaling that achieve the same outcome by different biological
processes from those of nonreceptors. Among these are wingless (Wg, which
downregulates Dpp receptor frizzle 2 (Fz2) expression) [31, 32], Daughter
against Dpp (Dad , which downregulates the Dpp target gene optomotor-blind,
Omb) [33], and PAI-1 (which induces receptor-mediated internalization and
degradation of urokinase [34]). In all cases, robustness with respect to
an upregulated signaling gradient resulting from environmental or genetic
perturbations requires additional expression of one or more inhibiting agents
above their normal concentration to be stimulated by signal enhancement. This
suggests the existence of some kind of feedback process to induce robustness.

Feedback has long been seen as a mechanism for responding to an enhanced
signaling gradient and stimulating upregulation of inhibitors of morphogen
signaling to achieve robustness (see [5,35–37] for examples). Specific feedback
loops identified in the literature include:! BMP-2 causes significant upregulation of Sox9 and the BMP antagonist

Noggin expression [22, 35].! High levels of Wingless signaling induce Notum expression and Notum
modifies the heparan sulfate proteoglycans Dally-like and Dally that contribute
to shaping Wingless gradient [38].

It is important to note that the negative results of [18, 19, 11] are not
inconsistent with the findings above. They merely suggest that negative
feedback of the Hill function type on signaling receptors is inappropriate for
achieving a robust signaling gradient for the low receptor occupancy (LRO)
type of morphogen systems investigated (while high receptor occupancy does
not induce distinctive patterns as seen in nature).
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In this paper, we initiate a different approach to the role of feedback in
ensuring robust signaling gradients. The overall goal of the project is to
investigate the effectiveness of feedback mechanisms other than a negative
feedback, especially that of the Hill’s function type, on receptor and a positive
feedback on nonreceptor synthesis rate. As a first step, we embark herein a
proof-of-concept examination of a new spatially uniform feedback process that
is distinctly different from the conventional spatially nonuniform Hill function
approach.

2. A model of drosophila wing imaginal disc

In this paper, we focus on Dpp gradients in the extracellular space of the
posterior compartment of a Drosophila wing imaginal disc. It has been shown
in [17] that the inclusion of transcytosis leads only to a re-interpretation
of the system parameters in the steady state results. At the same time,
we may simplify the morphogen activities in the wing imaginal disc as a
one-dimensional reaction–diffusion problem in which morphogen is introduced
at the rate VL locally adjacent (and symmetric with respect) to the border,
X = −Xm , between the anterior and posterior compartment of the disc, and
absorbed at the other end, X = Xmax, the edge of the posterior compartment.
The biological development is taken to be uniform in the direction along the
compartment border (except possibly for a layer phenomenon at each end of
the compartment) to reflect the fact that the ligand synthesis rate is taken to be
uniform in that direction. Extensions to a two-dimensional model to allow for
nonuniform activities in more than one spatial directions have been carried out in
[16,10, 39]. Although formulated as a model for Dpp in Drosophila wing
imaginal disc to make use of the known biology of that system, the developments
in this paper, with some modifications, also apply to other morphogen systems.

2.1. An extracellular model

Let [L(X, T )] be the concentration of a diffusing ligand (such as Dpp) at time
T and distance X toward wing disc edge normal to the compartment boundary
with the localized source spanning −Xm < X < 0. As in [13], we take the
diffusion of the ligand to be governed by ∂[L]/∂T = D∂2[L]/∂ X2, D being the
constant diffusion coefficient. We add to this reversible binding and degradation
of ligands and receptors as well as degradation of ligand–receptor complexes
with the binding rate kon[L][R], dissociation rate kof f [L R], degradation rate
kdeg[L R] for the bound ligands along with the degradation rates for the free
ligands and receptors kL[L] and kR[R], respectively. In these expressions, [R]
is the concentration of signaling receptors (e.g., Tkv for Dpp) synthesized
at the spatially distributed rate of VR(X, T ), and [L R] is the concentration
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of ligand–receptor (Dpp–Tkv) complexes. The parameters kon, kR , kL , kdeg,
and kof f are the various binding, degradation, and dissociation rate constants,
which may not be known (or constant) due to possible feedback phenomena.
Except for kon , all the other rate constants are in units of 1/ sec . While the
“binding rate constant” kon is in units of 1/ sec /mole.

There is no endocytosis prior to degradation in this formulation. The omission
of receptor internalization results in no loss of generality for the purpose of
this investigation; we have already established in [17] that the boundary value
problem (BVP) governing the steady-state behavior of a more general system
with transcytosis can be reduced to the same BVP for our simpler system.

For a proof-of-concept investigation, we focus in this paper on direct
feedback on the ligand synthesis rate but also discuss others such as feedback
on free and bound ligand degradation rates. Indirect feedback such as that
on nonreceptors is being investigated in [40]. In this way, we are led to the
following nonlinear reaction–diffusion model governing the evolution of the
three unknown concentrations [L], [R], and [L R], which generally vary in
space and time:

∂[L]
∂T

= D
∂2[L]
∂ X2

− kon[L][R] + kof f [L R] − kL[L] + VL , (1)

∂[L R]
∂T

= kon[L][R] − (kof f + kdeg)[L R], (2)

∂[R]
∂T

= −kon[L][R] + kof f [L R] − kR[R] + VR, (3)

where VL (X, T ) is the localized morphogen synthesis rate (centered at and)
spanning symmetrically with respect to the border X = −Xmin between the
two wing disc compartments. Below is a typical form of such synthesis rate
relevant to our investigation:

VL (X, T ) = V̄L H (−X ) =
{

V̄L (−Xm < X < 0)
0 (0 < X < Xmax).

(4)

The receptor synthesis rate is typically taken to be uniform in space and
time with VR(X, T ) = V̄R > 0 for −Xmin < X < Xmax and all T > 0. Except
for the inclusion of the term −kL[L] in (1), the system (1)–(4) is the same as
the one investigated in [14]. The free ligand degradation term is included here
to allow for a feedback process possibly appropriate for the Hedgehog (Hh)
morphogen [41] and other similarly behaved gradient systems.

With the early stage of the anterior compartment and posterior compartment
developing more or less similarly, we consider here only the ligand activities in
the posterior compartment for which we have the following idealized boundary
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conditions:

X = −Xmin :
∂[L]
∂ X

= 0, X = Xmax : [L] = 0, (5)

for all T > 0, where the no-flux condition at the compartment border is
a consequence of symmetry, and the kill end condition at the distal edge,
X = Xmax, of the compartment reflects the assumption of an absorbing edge
(which we will occasionally take to be infinitely far away to avoid making such
an assumption).

Until morphogens being generated starting at T = 0, ligand activities are
expected to be in quiescence so that we have as initial conditions

T = 0 : [L] = [L R] = 0, [R] = R0, (6)

for −Xm ≤ X ≤ Xmax. For the case of a uniform receptor synthesis rate, we
have from (2)

R0 = V̄R

kR
. (7)

by steady-state consideration prior to the onset of morphogen synthesis. With
kL = 0. the initial-boundary value problem (IBVP for short) defined by (1)–(6)
corresponds to the model treated in [14].

2.2. Dimensionless form

To reduce the number of parameters in the problem, we introduce the
normalized quantities

t = D

X2
0

T, x = X
X0

, ℓM = Xmax

X0
, xm = Xmin

X0
, (8)

{a, b, r} = 1
R0

{[L], [L R], [R]}, (9)

{ f0, g0, h0, gR, gL} =
X2

0

D
{kof f , kdeg, kon R0, kR, kL}, (10)

{vL(x, t), vR(x, t)} =
X2

0

D

{
VL

R0
,

VR

R0

}
, {v̄L , v̄R} =

X2
0

D

{
V̄L

R0
,

V̄R

R0

}
, (11)

where X0 is some typical scale length, taken to be Xmax for the finite domain
case so that ℓM = Xmax/X0 = 1. With these normalized quantities, we rewrite
the IBVP for the three unknowns [L], [L R], and [R] in the following
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normalized form:

∂a
∂t

= ∂2a
∂x2

− h0ar + f0b − gLa + vL(x, t), (12)

∂b
∂t

= h0ar − ( f0 + g0)b,
∂r
∂t

= vR(x, t) − h0ar + f0b − gRr, (13)

with the boundary conditions

x = −xm :
∂a
∂x

= 0, x = ℓM : a = 0, (14)

all for t > 0, and the initial conditions

t = 0 : a = b = 0, r = 1. (15)

In (12) and (13), we have kept the normalized ligand and signaling receptor
synthesis rates general to allow for inclusion of feedback in later sections.

The IBVP defined by (12)–(15) and its modified forms have been analyzed
as mathematical models for ligand activities and tissue pattern formation.

2.3. Time-independent steady-state behavior

2.3.1. Reduction to a well-posed BVP for ā(x). Given that both the ligand
and receptor synthesis rates are time independent, it can be shown [14] that the
extracellular model system has a unique steady state given by

{ā(x), b̄(x), r̄ (x)} = lim
t→∞

{a(x, t), b(x, t), r (x, t)}, (16)

which is linearly stable with respect to a small perturbation. It was shown
in [14] that the three governing equations may be reduced to a well-posed
two-point BVP for ā(x):

ā′′ − g0ā
α0 + ζ0ā

− gLā + v̄L H (−x) = 0, (17)

ā′(−xm) = 0, ā(ℓM ) = 0, (18)

with

b̄(x) = ā(x)
α0 + ζ0ā(x)

, r̄ (x) = α0

α0 + ζ0ā(x)
, (19)

where

α0 = f0 + g0

h0
, ζ0 =

kdeg

kR
. (20)

For a finite domain, X0 would normally be Xmax so that ℓM = 1.
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2.3.2. Low receptor occupancy. The morphogen system is said to be in a
state of LRO if

ζ0a = kdega/kR ≪ α0. (21)

For such a system, we may neglect terms involving ζ0,a in (17)–(19) to get an
approximate set of solutions {a0(x), b0(x), r0(x)} determined by

a′′
0 − µ2

La0 + v̄L H (−x) = 0, µ2
L = g0

α0
+ gL (22)

a′
0(−xm) = 0, a0(ℓM ) = 0, (23)

with

b0(x) = a0(x)
α0

, r0(x) = 1. (24)

We limit our discussion to a finite positive Xmax so that the exact solution
for ā0(x) is

a0(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν̄L

µ2
L

{
1 − cosh(µL )

cosh(µL (1 + xm))
cosh(µL (x + xm))

}
(−xm ≤ x ≤ 0)

ν̄L

µ2
L

sinh(µL xm)
cosh(µL (1 + xm))

sinh(µL (1 − x)) (0 ≤ x ≤ 1)
,

(25)

with

b̄(x) ≃ a0(x)
α0

, r̄ (x) ≃ 1. (26)

3. Robustness of signaling gradient

In this paper, we make use of the extracellular model summarized in the
preceding section to investigate the effectiveness of feedback processes for
achieving robust signaling gradients with respect to a significant change in the
morphogen synthesis rate. We do this in a broader context than the conventional
Hill function approach. In particular, the results for gradient systems in a state
of LRO will be useful in later developments for at least two reasons. Biological
gradients that are differentiating tend to be suitably convex, which is typically
achieved through a state of LRO. The mathematical model for systems in
an LRO state may be linearized to yield explicit solutions for the relevant
BVP and IBVP and thereby offering clearer insight to the system behavior. In
the subsections below, we recall certain aspects of robustness of signaling
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gradients with respect to significant changes in the morphogen synthesis rate
first formulated in [19] and further developed in [10, 11, 20, 42]. While other
measures of robustness have also been considered and analyzed (see [43]),
the main purpose of our summary below is to introduce a global measure
of robustness to provide a key ingredient for a new approach to effective
feedback mechanisms for achieving stable biological developments.

3.1. Perturbation due to enhanced morphogen synthesis

Normal development of wing imaginal disc and other biological organisms
may be altered by an enhanced morphogen synthesis rate stimulated by genetic
or epigenetic changes. As mentioned earlier, Dpp synthesis rate in Drosophila
imaginal disc doubles when the ambient temperature is increased by 6◦C
(shown by S. Zhou while in A.D. Lander’s Lab, see also [15]). At a state
of lower receptor occupancy, a significant increase in morphogen synthesis
rate has been shown to increase the steady-state signaling gradient magnitude
proportionately and change the slope and convexity of the gradient as well.
As such, the cell fate at each spatial location would be altered [10, 14, 42].
Without the restriction of LRO, the steady-state signaling gradient has also been
shown to be an increasing function of synthesis rate, though not necessarily
proportionately [10, 14].

Even if the difference between the normal and enhanced signaling gradients
is small at a particular location x as it would be for a system in a state of high
receptor occupancy (except for a narrow region near the edge of wing disc),
the pattern developed would still be significantly different because the cell
type that was at x̄ is now at some distance away at x̃ . Yet, the development of
biological organisms are generally not particularly sensitive to a significant
change in the ambient temperature that leads to significant signaling morphogen
synthesis rate change. Some kind of feedback control process must be at work
to minimize the effects of such changes on the biological developments. First
attempts in finding such feedback control mechanisms focused on a Hill function
type negative feedback on receptor synthesis rate. It was found by numerical
simulations [19] that such a feedback process does not lead to robustness.
That conclusion was proved mathematically in [18] where some insight was
gained on the reason for the ineffectiveness of such feedback. Briefly, the
effect of a Hill function-type negative feedback on receptor synthesis rate
tends to reduce the convexity of the gradient leading to significant qualitative
difference in the convexity between normal and enhanced signaling gradients
even if the difference in their magnitude along much of the spatial span may
have improved by the feedback.

It was suggested in [18] that a different kind of feedback process would be
more appropriate for safeguarding against such unwanted enhanced signaling
gradient. Two robustness indices have been introduced in [10,19,42] to provide
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global measures of the deviation from normal signaling gradient after synthesis
rate enhancement. We recall one of these in the next section to be used in our
proof-of-concept development of a new approach to feedback for robustness.

3.2. Root-mean-square signaling differential

Let b(x, t) be the normalized signaling morphogen concentration [L R]/R0

for a normal (wild-type) ligand synthesis rate VL (X, T ) = V̄L H (−X ) (or
vL (x, t) = v̄L H (−x) after normalization). Let be(x, t) be same quantity
for an enhanced (ectopic) synthesis rate eV̄L H (−X ) (or ev̄L H (−x) after
normalization) for some amplification factor e. A rather natural global measure
of signaling gradient robustness is the following signal robustness index Rb

corresponding to the root-mean-square of the deviation between be(x, t) and
b(x, t):

Rb(t) = 1
bh − bℓ

√
1

xℓ − xh

∫ xℓ

xh

[be(x, t) − b(x, t)]2dx, (27)

where 0 ≤ bℓ(t) < bh(t) ≤ b(−xm, t) and −xm ≤ xh < xℓ ≤ ℓM = 1. The
quantities xℓ, xh , bℓ, and bh may be chosen away from the extremities to
minimize the exaggerated effects of outliers.

For a system in steady state with

b̄(x) = lim
t→∞

b(x, t), b̃(x) = lim
t→∞

be(x, t), (28)

the robustness index Rb(t) tends to a constant R̄b:

R̄b = lim
t→∞

Rb(t) = 1
bh − bℓ

√
1

xℓ − xh

∫ xℓ

xh

[b̃(x) − b̄(x)]2dx . (29)

In subsequent developments, we set xh = 0 in part because signaling is
irrelevant in the interval of ligand synthesis. We also take bℓ = b(1, t) = 0 for
simplicity. For the case of LRO, we take bh to be the explicit (approximate)
steady-state value for b̄(0) known from (25) and (26) to be

bh = v̄L

α0µ
2
L

sinh(µL xm) sinh(µLℓM )
cosh(µL (ℓM + xm))

∼ b̄(0). (30)

For the case of high receptor occupancy (which is usually not biologically
useful), it would be more appropriate to take bh = gr/g0 corresponding to
receptor saturation.

The signal robustness index Rb(t) is not the only measure of the deviation
of the modified signaling gradient from the one prior to morphogen synthesis
rate enhancement. Given an existing genetic program for individual cells, a
more relevant measure of robustness may be the displacement of the same level
of morphogen–receptor complex concentration due to an ectopic morphogen
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synthesis rate. Such a robustness index, denoted by Rx (t), was first introduced
in [19] and investigated in [42] and references cited therein. The present
proof-of-concept study limits itself only to working with Rb(t) and R̄b and
leaves the discussion on Rx (t) and R̄x to a separate investigation [40].

3.3. Approximate solution for LRO

For a morphogen system in a state of low occupancy so that g0a/gR

≪ α0, we have from [14] (and with ρ = 1) the following approximate
steady-state solutions for the signaling gradients of the normal (wild type) and
(environmentally or genetically) perturbed system:

b̃(x) ∼ eb̄(x) = ev̄L

α0µ
2
L

sinh(µL xm) sinh(µL (1 − x))
cosh(µL (1 + xm))

, (0 ≤ x ≤ ℓM ), (31)

where µ2
L = gL + g0/α0 with µ2

L ≃ h0 + gL whenever f0 ≪ g0 (assuming
that the perturbed system is also in a state of LRO). In the absence of any
feedback, the parameter e is the amplification factor of the ligand synthesis
rate. In particular, for e = 2, xℓ = 1, xh = 0, we have

R̄b ∼ 1
sinh(µL )

√∫ 1

0
[sinh(µL (1 − x))]2dx

= 1
sinh(µL )

√
1
2

(
sinh(2µL )

2µL
− 1

)
. (32)

For a gradient system with g0 = 0.2, f0 = 0.001, gr = 1, h0 = 10, ℓM = 1,
xm = 0.1, and v̄L = 0.05 (together with V̄L = 0.002 µM, V̄R = 0.04 µM,
D = 10−7cm2/ sec, Xmax = 0.01 cm) corresponding to β = 0.25 in table 2
of [14], the steady state is in low (receptor) occupancy. For this case, the
approximate solution for R̄b given by (32) is 0.3938 . . ., while accurate
numerical solutions of the BVP for ā(x) gives 0.3939 . . . for a percentage
error of less than 0.01%.

If ligand synthesis rate is increased 20 times to V̄L = 0.04 µM, the accurate
numerical solution for R̄b is found to be 0.37486 . . . The percentage error of
the LRO approximate is still less than 1%. These comparisons serve to validate
the numerical simulation code developed for exact numerical solutions of our
model.

Our main interest however is in the use of R̄b, or more generally Rb(t),
in an appropriate feedback mechanism for attaining robustness of signaling
morphogen gradients. To the extent that some enhanced ligand systems may
only be near LRO (and still sufficiently differentiating), the use of the
approximate signaling robustness index based on the approximate solution (31)
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may not be sufficiently accurate. For these cases, it is necessary to obtain
numerical solutions for ā(x) and ãe(x) and the corresponding value for R̄b.

4. Feedback on ligand synthesis rate

4.1. A nonlocal feedback with delay

Downregulation of signaling activities are known to be accomplished in
different ways. Whether it is through more nonreceptors or higher degradation
rate of free or bound ligands, the net effect is equivalent to a lower concentration
of free ligand available for binding with signaling receptors. To initiate our new
approach to feedback, we consider in this first effort the effect of a negative
feedback stimulated by a higher than normal signaling ligand concentration
to be simply a reduction of the ligand synthesis rate VL . To implement this
approach, we take the normalized synthesis rate vL(x, t) to include a negative
feedback factor using the signaling robustness index Rb(t) as an instrument
for downregulating the synthesis rate:

vL(x, t) = κ(t ; τ )v̄L H (−x) ≡ ev̄L H (−x)
1 + c [Rb(t − τ )]n , (33)

where the amplification factor e is as previously defined in Section 3.2 and
where c and n are two parameters to be chosen for appropriate feedback strength
similar to those for a Hill’s function. Two features of the feedback process in
(33) should be noted. First, with c = n = 1, the feedback mechanism reduces
the synthesis rate by a fraction that depends on the average deviation over an
appropriate spatial span (e.g., the distal span of the posterior compartment of
the wing imaginal disc of the Drosophila). Second, the feedback may not be
instantaneous as a delay of τ unit of dimensionless time is allowed for the
feedback to become effective.

Withτ > 0(andvR(x, t) = v̄R uniformly throughout theentiredistal-proximal
span of the wing imaginal disc), the IBVP for the three normalized concentration
may be computed as we would for the problem without feedback except
that the ligand synthesis rate change with time. In particular, for the period
[0, τ ], the problem is identical to the one without feedback. For the interval
[kτ, (k + 1)τ ] and with t = kτ + η, the synthesis rate is modified to

vL (x, t) = ev̄L H (−x)
1 + c [Rb((k − 1)τ + η)]n (0 < η < τ ) (34)

with all concentrations continuous at the junctions between the time intervals.
This solution process is being implemented and the results analyzed in [40].
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4.2. Time-independent steady-state with feedback

It has been shown in [14] that the extracellular model system without feedback
has a unique steady state that is linearly stable with respect to small perturbations
from the steady state. We show here that the same is true for our model with
feedback on the ligand synthesis rate. Suppose {a(x, t), b(x, t), r (x, t)} of
(12)–(15) tend to the time-independent states {ã(x), b̃(x), r̃ (x)} and therewith
Rb(t) → R̄b (see (27) and (29 )). In that case, we have vL(x, t) of (34) tends to
κ̄(R̄b)v̄L H (−x), where

κ̄(R̄b) = lim
t→∞

κ(t ; τ ) = e

1 + c
(
R̄b

)n . (35)

Note that we have used κ̄(R̄b) for κ(t ; τ ) in the steady-state case because the
amplitude factor κ(t ; τ ) is no longer time dependent and is only a function of
R̄b (and of course of e, n, and c in both cases).

For the steady-state solution {ã(x), b̃(x), r̃ (x)}, we have ∂( )/∂t = 0 so that
the governing partial differential equations and boundary conditions become

ã′′ − h0ãr̃ + f0b̃ − gLã + κ̄(R̄b)v̄L H (−x) = 0, (36)

h0ãr̃ − ( f0 + g0)b̃ = 0, (gr + h0ã)r̃ − f0b̃ = v̄R, (37)

with

ã′(−xm) = 0, ã(1) = 0, (38)

where a prime indicates differentiation with respect to x , that is, ( )′ = d( )/dx .
As in the case without feedback, we can solve (37) for b̃ and r̃ in terms of ã

(analogous to (19) and (20)):

b̃(x) = ã(x)
α0 + ζ0ã(x)

, r̃ (x) = α0

α0 + ζ0ã(x)
(39)

with

α0 = f0 + g0

h0
, ζ0 =

kdeg

kR
. (40)

and use the results to eliminate these two quantities from the only ordinary
differential equations (ODE) (36) to get a BVP for ã alone:

ã′′ − g0ã
α0 + ζ0ã

− gLã + κ̄(R̄b)v̄L H (−x) = 0, (41)

ã′(−xm) = 0, ã(1) = 0, (42)

where κ̄(R̄b) is given by (35).
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The following theorem, similar to the one in [14], ensures the BVP for
the steady-state concentration ā(x) above is well-posed, nonnegative, and
monotone decreasing:

THEOREM 2. For positive values of the parameters g0, f0, h0, ν̄L , and ν̄R,
there exists a unique, nonnegative solution ā(x) of the BVPs (41) and (42). The
corresponding concentrations b̄(x) and r̄ (x) can then be calculated from (39).

Proof: The existence proof is similar to that in [14] for the case without
feedback. It suffices to produce an upper solution and a lower solution for the
problem to apply the known monotone method of [44] (see also [45, 46]).

Evidently, aℓ(x) ≡ 0 is a lower solution because

−[aℓ]′′ + g0aℓ

α0 + ζ0aℓ

+ gLaℓ − ev̄L

1 + c
(
R̄b

)n H (−x)

= − ev̄L

1 + c
(
R̄b

)n H (−x) ≤ 0 (−xm < x < 1),

with

a′
ℓ(−xm) = 0, aℓ(1) = 0.

For an upper solution, we note that

ã′′ + ev̄L ≥ ã′′ − g0ã
α0 + ζ0ã

− gLã + ev̄L

1 + c
(
R̄b

)n H (−x) = 0.

The exact solution for ã′′ + ev̄L = 0 is

au(x) = ev̄L

{(
xm + 1

2

)
− xm x − 1

2
x2

}

with a′
u(−xm) = 0 and au(1) = 0. From (i) au(−xm) = v̄L

2 (1 + xm)2 >
0, (i i) a′

u(x) = −v̄L(x + xm) < 0 for x > −xm, and (i i i) au(1) = 0, we have

au(x) > 0 (−xm ≤ x < 1).

It follows that
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− [au]′′ + g0au

α0 + ζ0au
+ gLau − ev̄L H (−x)

= ev̄L + g0au

α0 + ζ0au
+ gLau − ev̄L H (−x) > ev̄L − ev̄L H (−x) ≥ 0

for −xm < x < 1 so that au(x) is an upper solution for the BVP for ā(x). The
monotone method assures us that there exists a solution ã(x) of the BVPs (41)
and (42) with

0 = aℓ(x) ≤ ã(x) ≤ au(x).

Because au(x) is already known to be positive for −xm ≤ x < 1, ã(x) must be
nonnegative in the whole solution domain.

To prove uniqueness, let a(1)(x) and a(2)(x) be two (nonnegative) solutions
and a(x) = a(1)(x) − a(2)(x). Then as a consequence of the differential equation
(41) for a(1)(x) and a(2)(x) , the difference a(x) satisfies the following
differential equation:

−a′′ + g0ζ0α0a
(α0 + ζ0a(1))(α0 + ζ0a(2))

+ gLa = 0.

Form
∫ 1

−xm

[
− a′′ + g0ζ0α0a

(α0 + ζ0a(1))(α0 + ζ0a(2))
+ gLa

]
adx = 0,

and integrate by parts. Upon observing continuity of ã(x) and ã́(x), and
application of the boundary conditions in (42), the relation above may be
transformed into
∫ 1

−xm

[á(x)]2dx +
∫ 1

−xm

{
g0ζ0α0[a(x)]2

(α0 + ζ0a(1)(x))(α0 + ζ0a(2)(x))
+ gL [a(x)]2

}
dx = 0.

Both integrands are nonnegative and not identically zero; therefore we must
have a(x) ≡ 0 and uniqueness is proved. !

Stability of the steady-state solution with respect to small perturbations in
the presence of feedback is more complicated to analyze and will be omitted
because it is not needed in subsequent developments.

4.3. Monotonicity

As for the model analyzed in [14], free morphogen concentration ã(x) and
the corresponding signaling morphogen gradient b̃(x) can be shown to be
(positive and) monotone decreasing in the open interval (−xm, 1). First we
rule out the possibility of any extremum in that interval.
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PROPOSITION 2. Under the same hypotheses as those in Theorem 2, the
nonnegative steady-state concentration ã(x) does not attain a maximum or
minimum in (0, 1) and hence is monotone decreasing in that interval.

Proof: First, it is easy to see that the nonnegative ã(x) does not have an
interior maximum in the interval 0 < x < 1. If it should have a local maximum
at some interior point x0, then we must have (ã′(x0) = 0 and) ã′′(x0) ≤ 0.
However, because ã(x) ≥ 0 and vL(x) = 0 in x > 0, we have

ã′′ = g0ã
α0 + ς0ã

+ gLã ≥ 0.

It follows that we must have ã′′(x0) = 0 and therewith ã(x0) = 0. Because x0

is a maximum point, we must have ã(x) = 0 in 0 < x < 1. The continuity
requirements imply ã(0) = ã́(0) = 0. However, it is impossible for any nontrivial
solution of the ODE (41) to satisfy both of these conditions unless ã(x) = 0
for all x in [−xm, 0] as well. Such a free morphogen concentration does not
satisfy (41) in the interval (−xm, 0) where the normalized Dpp synthesis rate
is a positive constant v̄L . Hence ã(x) does not have a maximum in (−xm, ∞).

Also, ã(x) does not have a positive interior minimum. If it should have
one at x0 (with ã(x0) > 0), then it must have an interior maximum at some
x1 > x0 in order for ã(x) to decrease from ã(x1) > 0 to ã(1) = 0. However,
this contradicts the fact that ã(x) does not have an interior maximum. There is
still the possibility of a local interior minimum ã(x0) = 0. With ã́(x0) = 0 at
the local minimum, we have ã(x) ≡ 0, which does not satisfy the ODE (41) in
the interval (−xm, 0).

Altogether, the solution ã(x) of the BVP must be (nonnegative and)
monotone decreasing from ã(−xm) > 0 to ã(ℓM ) = 0. !

We can actually prove that the relevant morphogen concentrations are
positive for x < 1, which we will need in subsequent development.

COROLLARY 4. Under the hypotheses of Theorem 2, the concentrations
ã(x), b̃(x), and r̃ (x) do not vanish in (−xm, 1).

Proof: Suppose ã vanishes at x0 in (−xm, 1) and hence attains a local
minimum there (because ã(x) is nonnegative). However, this contradicts
Proposition 2, which asserts that ã(x) does not have an interior minimum.
That the remaining quantities do not vanish follows from (39) and (40). !

4.4. Low receptor occupancy

If the morphogen system is in a state of LRO prior to and after ligand synthesis
enhancement so that (21) is met generally by the present feedback model
(including the special case where c = 0 and e = 1 so that ã(x ; R̄b) reduces to
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ā(x)), we may use the linearized model

a′′
0 = µ2

La0 − κ̄(R̄b)v̄L H (−x), (43)

a′
0(−xm) = 0, a0(1) = 0 (44)

with

µ2
L = gL + g0

α0
(45)

for an approximate solution of our problem. The exact solution of (43) and (44),
denoted by a0(x ; R̄b) for its dependence on R̄b, is expected to be an accurate
approximation of the exact solution ã(x ; R̄b). It reduces to the (approximate)
wild-type ligand concentration when c = 0 and e = 1.

For a finite positive Xmax, the exact solution for a0(x) is

a0(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ̄ ν̄L

µ2
L

{
1 − cosh(µLℓm)

cosh(µL (1 + xm))
cosh(µL (x + xm))

}
(−xm ≤ x ≤ 0)

κ̄ ν̄L

µ2
L

sinh(µL xm)
cosh(µL (1 + xm))

sinh(µL (1 − x)) (0 ≤ x ≤ 1)

,

(46)

with

b̃(x) ≃ a0(x)
α0

, α0b̃(0) ≃ ã(0) ≃ a0(0) = κ̄ ν̄L

µ2
L

sinh(µL xm)
cosh(µL (1 + xm))

sinh(µL ).

(47)
For µL ≫ 1, the expression for a0(x) in the signaling range of 0 ≤ x < 1 is
asymptotically

a0(x) ∼ κ̄ ν̄L

µ2
L

e−µL x (0 ≤ x < 1),

so that the gradient is effectively a boundary layer adjacent to x = 0, steep
near x = 0, and dropping sharply to near zero away from x = 0.

The discussion above leads to the following observation:

PROPOSITION 4. Even if a morphogen system is in a steady state of LRO
(so that the condition (21) is satisfied), its signaling gradient may not be
a biologically meaningful gradient for the intended tissue patterning if the
condition µL = O(1) is not met.



Feedback for Robust Signaling Gradients 35

5. Numerical algorithms for steady-state solutions

5.1. A single pass solution scheme

The presence of the factor R̄b in the ODE for ã makes the solution of the BVP
(41) and (42) much less straightforward. As R̄b encapsulates the unknown
concentrations of normal and enhanced signaling ligand–receptor complexes,
it depends on the solutions of two BVPs over the entire span of the solution
domain through the integrated condition (29). To the extent that there are
reliable software for solving BVP in ODE, we may make use of these tools by
reconfiguring the integro-differential equation problem for ã to a BVP for a
system of ODEs.

For this purpose, we let ā(x) and ã(x) be the unknown free (unbound)
ligand concentration for a wild-type ligand synthesis rate ν̄L H (−x) and an
ectopic synthesis rate κ̄ ν̄L H (−x), respectively, with the amplification factor κ̄
to be specified (as previously done in the discussion of the robustness index
R̄b). The wild-type concentration ā(x) is determined by the BVP (41)–(42)
with e = 1 and c = 0 so that

ā′′ − g0ā
α0 + ζ0ā

− gLā + v̄L H (−x) = 0, (48)

ā′(−xm) = 0, ā(1) = 0. (49)

Correspondingly, ã is determined by the BVP (41) and (42) and the integral
condition (29) with xℓ = 1, xh = 0, and bℓ = 0 so that

R̄b = 1
bh

√∫ 1

0
[b̃(x ; R̄b) − b̄(x)]2dx, (50)

where

b̃(x ; R̄b) = ã(x ; R̄b)

α0 + ζ0ã(x ; R̄b)
, b̄(x) = ā(x)

α0 + ζ0ā(x)
. (51)

As indicated previously, we take bh to be given by (30) for systems of LRO
(and bh = kR/kdeg for less likely systems of high receptor occupancy).

For a single pass algorithm for the solution of our problem where the
nonlinear relation (29) involves the unknown ã(x ; κ̄(Rb)), we introduce two
new functions to replace the integral relation (29). The first is the function
R2(x) defined by

R′
2 = 1

b2
h

[b̃(x) − b̄(x)]2 = 1

b2
h

(
ã(x)

α0 + ζ0ã(x)
− ā(x)

α0 + ζ0ā(x)

)2

H (x), (52)
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and the initial condition

R2(−xm) = 0. (53)

With the Heaviside function H (x) on the right hand side of (52), we may
stipulate R2(x) to be continuous x = 0.

The second new function is Rb(x) defined by

R′
b = 0 (54)

specifying that it does not change with location and is therefore some (unknown)
constant R̄b, that is, Rb(x) = R̄b. The two new functions are related by the
integral condition (50) taken in the form

R2(1) = R̄2
b . (55)

In terms of the two new functions, we may rewrite (without altering the
content of the ODE (36)) the BVP for ã as

ã′′ − g0ã
α0 + ζ0ã

− gLã + κ̄(Rb)v̄L H (−x) = 0, (56)

ã′(−xm) = 0, ã(1) = 0, (57)

with

κ̄(Rb) = 2
1 + cRb

, (58)

where we have taken e = 2 and n = 1 to be concrete (with c still to be
specified). In this form, Rb is treated as a function of position Rb(x).

Note that (56), (52) and (54) are three coupled ODE for the three unknowns
ã(x), R2(x) and Rb(x) to be solved simultaneously. It is a fourth order system
with four auxiliary conditions given in (57), (53) and (55) with the latter taken
in the form

R2(1) = [Rb(1)]2 . (59)

Together, the BVP for the fourth-order system defined by (56), (52), (54),
(57), (53), and (59) enables us to avoid having the global parameter R̄b as an
unknown to be determined by an integral on the yet unknown solutions of the
two principal ODEs over the entire solution domain.

Adding to this the BVP defined by (48) and (49), we have a sixth order
system for the four unknowns ā(x), ã(x), Rb(x), and R2(x). Such a BVP can be
solved by computing software generally available on MatLab, Mathematica,
and Maple. It should be noted however that a single pass solution algorithm
for this problem requires the software to have the capability of handling a
vanishing Jacobian in the linearization of the nonlinear BVP by some form of
Newton’s method.
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5.2. An iterative algorithm

It is possible to avoid computing with vanishing Jacobians. Given the dependence
of ã(x) (and hence b̃(x)) on R̄b, the relation (50) may be written abstractly as

R̄b = C(R̄b), (60)

where

C(R̄b) = 1
bh

√∫ 1

0
[b̃(x ; R̄b) − b̄(x)]2dx . (61)

Observe that 0 ≤ C(0) < 1 and, for 0 ≤ c < 1,

0 ≤ C(R̄b) < 1, (62)

given [b̃(x ; R̄b) − b̄(x)]/bh < 1 for x > 0 .
A typical iterative solution scheme would start with some initial estimate

R̄0 and calculate successive iterates R̄k by the simple iteration

R̄k+1 = C(R̄k) = 1
bh

√∫ 1

0

[
b̃(x ; R̄k) − b̄(x)

]2
dx, k = 0, 1, 2, 3, . . . ., (63)

where b̃(x ; R̄k) is determined from the solution ã(x ; R̄k) of the BVP (56)–(58)
with R̄b = R̄k in

κ̄(R̄b) = 2

1 + cR̄k
. (64)

The sequence {R̄k} is guaranteed to converge to R̄b if C(·) should be a
contraction map, that is, if

∣∣∣∣
dC

d R̄b

∣∣∣∣ < 1. (65)

Rather than attempting to establish the contracting property of C(R̄b), we
show first that ã(x ; R̄b) and b̃(x ; R̄b) are both decreasing functions of R̄b. The
nonpositivity of the marginal change of b̃(x ; R̄b) with R̄b is then used in

dC

d R̄b
= 1

b2
hC

∫ 1

0
[b̃(x ; R̄b) − b̄(x)]

∂ b̃(x ; R̄b)

∂ R̄b
dx (66)

to analyze the convergence of the iterative process (63).
Upon differentiating all relations in the BVP for ã(x ; R̄b) partially with

respect to R̄b, we obtain

− w′′ +
(

α0

α0 + ζ0ã
+ gL

)
w − 2v̄L

(
1 + R̄b

)2 H (−x) = 0, (67)
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w′(−xm ; R̄b) = 0, w(1; R̄b) = 0, (68)

where

w(x ; R̄b) = −∂ ã(x ; R̄b)

∂ R̄b
.

Clearly, wℓ(x ; R̄b) ≡ 0 is a lower solution of the BVP for u(x ; R̄b) given

− w′′
ℓ + α0(1 + gL ) + gLζ0ã

α0 + ζ0ã
wℓ − 2v̄L

(
1 + R̄b

)2 H (−x)

= − 2v̄L
(
1 + R̄b

)2 H (−x) ≤ 0 (0 ≤ x ≤ 1).

As an upper solution, we have

wu(x ; R̄b) = 2v̄L
(
1 + R̄b

)2

{(
xm + 1

2

)
− xm x − 1

2
x2

}

with

−w′′
u − 2v̄L

(
1 + R̄b

)2 = 0.

Note that

− w′′
u +

(
α0

α0 + ζ0ã
+ gL

)
wu − 2v̄L

(
1 + R̄b

)2 H (−x)

≥ −w′′
u − 2v̄L

(
1 + R̄b

)2 H (−x) = 2v̄L
(
1 + R̄b

)2 [1 − H (−x)] ≥ 0,

and

w′
u(−xm ; R̄b) = 0, wu(1; R̄b) = 0.

The monotone method of [44] implies that w(x ; R̄b) exists, is unique, and
nonnegative so that

−wu(x ; R̄b) ≤ ∂ ã(x ; R̄b)

∂ R̄b
≤ 0.

This leads to the following proposition on the nonpositivity of the marginal
value ∂ b̃(x ; R̄b)/∂ R̄b:

PROPOSITION 5. ∂ b̃(x ; R̄b)/∂ R̄b ≤ 0.
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Table 1
Numerical Solutions by the Iterative Algorithm

Xmax = 0.01 cm, Xmin= 0.001 cm, kon R0 = 0.01 sec/µM,
kdeg = 2 × 10−4/ sec, kR = 0.001/ sec, koff = 10−6/ sec, kL = 0,

D = 10−7 cm2/ sec, V̄L = 0.002 µM/ sec, V̄R = 0.04 µM/ sec

c R̄k R̄k+1 b̄(0) b̃(0;R̄k) b̃(0;R̄k+1) b̃(0;0)

1 0.24190 0.24051 0.05798 0.09327 0.09306 0.11533
2 0.18177 0.18296 0.05798 0.08451 0.08469 0.11533
4 0.11114 0.11163 0.05798 0.07422 0.07431 0.11533

Proof: Upon differentiating the expression for b̃(x ; R̄b) in (51) partially
with respect to R̄b, we obtain

∂ b̃(x ; R̄b)

∂ R̄b
= α0

(α0 + ζ0ã)2

∂ ã(x ; R̄b)

∂ R̄b
≤ 0. !

Together with (62) and b̃(x ; R̄b) > 0, Proposition 5 implies dC/d R̄b ≤ 0 as
long as [b̃(x ; R̄b) − b̄(x)] ≥ 0 (which is the case at the start of the iterative
scheme). However, this does not make {R̄k} a nonincreasing sequence (though
bounded below by 0). If R̄k+1 < R̄k , we would have ã(x ; R̄k+1) > ã(x ; R̄k)
and therewith R̄k+2 > R̄k+1 (consistent with dC/d R̄b ≤ 0). As such, we
have a nonnegative sequence {R̄k} alternately increasing and decreasing with
successive iterations bounded below (by 0) and above (by R̄b(c = 0)) offering
the prospect of convergence. As we see from an illustrative example in the next
section, the iterative scheme converges rapidly for c = 1 but the steady-state
value found is unstable for c ≫ 1.

5.3. An illustrative example

To gain some insight to the iterative algorithm for the steady-state value R̄b of
the robustness index, we apply it to the system characterized by the parameter
values shown in Table 1. This system meets the condition (21) for a state of
LRO and is further confirmed to be so by comparison of the exact numerical
solution with that of the linearized model. The steady-state robustness index R̄b

is found after less than 10 iterations with less than 0.2% discrepancy between
the 8th and 9th iterations as shown on the line for c = 1 in Table 1.

The quick convergence of the scheme for the particular example is gratifying.
However, the biological implication is not as satisfying. Taking the average of
the two iterates for R̄k shown in the table gives a rather accurate numerical
solution of R̄b ≃ 0.24121 . . . for the steady-state robustness index. This is
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above the acceptable threshold of R̄b ≤ 0.2 set (arbitrarily) in [19] for
robustness. While there is some flexibility in setting the reference value bh and
reinterpreting the new definition, a more serious issue is the magnitude and
shape of the resulting steady-state signaling gradient.

Comparing the values of b̄(0) and b̃(0; 0) with the accurate numerical
solution b̃(0; R̄k) associated with the final acceptable iterate R̄k shows that the
solution with feedback is reduced but still closer to the corresponding enhanced
concentration b̃(0; 0) than the concentration for the wild-type system. The same
is true for the entire signaling region of the solution domain. Two questions
suggest themselves: Is this the best we can do by the new feedback mechanism
in the form (33) (and consequently robustness cannot be attained by such a
mechanism)? If so, are there modifications that would lead to robustness? We
examine possible answers to these questions in the following sections.

5.3.1. Wild-type and perturbed systems at LRO. For our example, the model
system is in a state of LRO before and after ligand synthesis enhancement. In
that case, accurate approximate solutions for ã(x) and ā(x) can be obtained as
was done previously for the model without feedback. Briefly, the ODE for
ã(x) is linearized to give a linear equation for the approximate solution a0(x):

a′′
0 − µ2

La0 + κ̄(r̄b)v̄L H (−x) = 0,

a′
0(−xm) = 0, a0(1) = 0,

where µ2
L is as given by (45) and where R̄b in the expression (64) for κ̄

is now replaced by the corresponding approximate expression r̄b using the
LRO approximate solution b0(x ; r̄b) for b̃(x ; R̄b). The exact solution for this
problem is given by (46) with

α0b̃(x ; R̄b) ≃ a0(x ; r̄b) = κ̄(r̄b)ν̄L

µ2
L

sinh(µL xm)
cosh(µL (1 + xm))

sinh(µL (1 − x)), (69)

α0b̄(x) ≃ [a0(x)]κ̄=1 = ν̄L

µ2
L

sinh(µL xm)
cosh(µL (1 + xm))

sinh(µL (1 − x)), (70)

for the signaling region 0 ≤ x ≤ 1.

5.3.2. R̄b at LRO. The expressions (69) and (70) for the enhanced and
wild-type normalized signaling morphogen gradients, b̃(x ; R̄b) and b̄(x), in the
range relevant for cell signaling are to be used, respectively, in the expression
(50) as was done in (32) to obtain for an LRO system

R̄b ≃ r̄b(c) = γ (µL )
[

2
1 + cr̄b

− 1
]

(71)
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with

γ (µL ) = 1√
2 sinh(µL )

√(
sinh(2µL )

2µL
− 1

)
. (72)

For c = 0 (corresponding the case of no feedback), we have immediately
[
R̄b

]
c=0 ≃ r̄b(0) = γ (µL ),

which is 0.3938 . . . .. for our example (as already reported in the discussion
following (32)) while accurate numerical solution by the iterative algorithm of
the previous section gives R̄b = 0.3939 . . .

For 0 < c < ∞, the relation (71) may be written as the quadratic equation

cr̄2
b + (1 + cγ )r̄b − γ = 0 (73)

for r̄b with one positive solution

R̄b ≃ r̄b = 1
2c

[
−(1 + cγ ) +

√
(1 + cγ )2 + 4γ

]
> 0. (74)

For the problem specified by the parameter values in Table 1 and c = 1, such a
feedback process gives

[
R̄b

]
c=1 ≃ r̄b(1) = 0.24108 . . . , (75)

which is nearly identical to the average 0.24160 . . . of the 8th and 9th iterates
found earlier for R̄b(c = 1). As such, R̄b(c = 1) ≃ 0.24121 . . . (together with
a corrected signaling gradient that is closer to the perturbed gradient than the
unperturbed one) is the best the feedback (33) with c = 1 can attain.

5.3.3. Modification for a more effective feedback process. To improve on
the feedback mechanism toward robustness of signaling gradients, we note
that a larger value of c in the expression (33 ) would reduce the enhanced
synthesis rate to result in a lower concentration level of ã(x ; R̄b) and b̃(x ; R̄b).
This in turn should lead to a smaller robustness index R̄b(c) as we would like
to have. This expectation is easily proved for systems in a state of LRO by
differentiating the relation (73) with respect to c to get for c > 0:

dr̄b

dc
= − γ − r̄b

c(1 + cγ + 2cr̄b)
< 0,

given r̄b > 0 for c > 0. The same result can be established for gradient systems
of more general receptor occupancy:

PROPOSITION 6. d R̄b/dc < 0 for c > 0.

Proof: We first prove

∂ ã(x ; R̄b(c))/∂c < 0, ∂ b̃(x ; R̄b(c))/∂c < 0,
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using the approach for proving

∂ b̃(x ; R̄b)/∂ R̄b < 0,

when c was set equal to 1. The proposition follows from

d R̄b

dc
= 1

b2
h R̄b(c)

∫ 1

0
[b̃(x ; R̄b(c)) − b̄(x)]

∂ b̃(x ; R̄b(c))
∂c

dx,

given [b̃(x ; R̄b(c)) − b̄(x)] > 0 for 0 < c < ∞. !
From (74), we have

lim
c→∞

R̄b(c) = 0.

Thus by choosing c sufficiently large, we should be able to reduce the robustness
index and scale down b̃(x ; R̄b(c)) to be close to b̄(x). The results for such an
effort for c = 2 and c = 4 are reported in the last two rows of Table 1. For c = 4,
not only is R̄b (≃ 0.111385 . . .) well below the robustness threshold of 0.2, the
feedback-adjusted normalized signaling ligand concentration (≃ 0.074265 . . .)
at x = 0 is now much closer to the wild-type concentration (≃ 0.05798 . . .)
than the enhanced concentration (≃ 0.11533 . . .) without feedback. In fact, the
feedback adjusted gradient b̃(x ; R̄b(c)) (not shown here) is also closer to b̄(x)
than b̃(x ; 0) for all x > 0.

Note that a large c value also has the effect of changing R̄b(c), and
therewith b̃(x ; R̄b(c)), more drastically from iteration to iteration. The larger
swings would make the iterative scheme more erratic. Experiments on specific
examples show a rather slow convergence for a straightforward application of
the iterative algorithm (63). Some judicious modifications of the algorithm
have led to faster convergence to the limiting value for R̄b.

5.3.4. A Hill function-type modification. For comparison, we consider here
a different kind of feedback process on the synthesis rate for the steady-state
behavior of the form

κ̂ = 2

1 + [φ(x)]2 , φ = 1
bh

[
b̃(x ; 0) − b̄(x)

]
. (76)

This Hill function-type feedback is spatially nonuniform and provides a crude
model for a delay feedback with effects quickly reaching a steady state. The
steady-state solution of the morphogen system with such a feedback correction
gives R̂b = 0.2050885 . . . and b̂(0) ≃ 0.0879065 . . . .

While the results are slightly better than those by the spatially uniform
feedback (58), the two corresponding signaling gradients b̃(x ; R̄k) and b̂(x)
are not significantly different. More importantly, the comparison would favor
the spatially uniform feedback if the enhanced synthesis rate should induce a
receptor saturated state. For then, the signaling gradient resulting from (76)



Feedback for Robust Signaling Gradients 43

would be more concave and biologically less differentiating for the purpose of
differential cell fates similar to the results found in (18). Further comparison
between spatially uniform and nonuniform feedback processes should be more
properly investigated.

5.4. Delay time long compared to time to steady state

In this section, we consider the extreme case of a feedback delay time τ being
substantially longer than the time t∞ for the ligand system to reach its steady-state
behavior, for example, τ = 2t∞. (For this purpose, we take g0t∞ = 10 with
λ0 " g0 being the smallest decay rate constant for a transient to decrease
exponentially in time as shown in the discussion of linear stability in [14].) For
this case, the various concentrations would already be in a time-independent
steady state at (k − 1)τ ≪ t ≤ kτ ≡ tk for k = 1, 2, 3, . . . . with ã(k)(x ; R̄(k)

b )
determined by (41) and (42) for an appropriate time-independent synthesis
rate amplitude factor κ̄ adjusted for the effect of feedback determined by the
solution of the corresponding BVP for the previous interval as described below.

With R̄(0)
b = 0 (because feedback has not become effective for 0 ≤ t ≤ τ ),

the steady-state solution ã(1)(x) appropriate for t near τ (say 0 ≪ t ≤ τ ) is
found by solving the BVPs (41) and (42) with

κ̄ = κ̄ (1) = 2

1 + cR̄(0)
b

. (77)

The solution can be computed by solving (41)–(42) with (78) and the
corresponding b̃(1)(x ; R̄(0)

b ) can be obtained by the relation (39) to be used in

R̄(1)
b = 1

bh

√∫ 1

0
[b̃(1)(x ; R̄(0)

b ) − b̄(x)]2dx, (78)

for the determination of the unknown steady-state robustness index R̄(1)
b for

the interval 0 ≪ t ≤ τ .
Near the end of the interval [τ, 2τ ], the steady-state solution ã(2)(x)

appropriate for τ ≪ t ≤ 2τ is again determined by (41) and (42) but now with

κ̄ = κ̄ (2) = 2(
1 + cR̄(1)

b

) (
1 + cR̄(0)

b

) .

With ã(x ; κ̄ (1)) = ã(1)(x) having reached its steady state for t near τ , say
0 ≪ t ≤ τ , the effect of feedback is felt permanently during the next time
period τ ≪ t ≤ 2τ through a reduction of the synthesis rate so that the actual
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synthesis rate should be

vL (x, t) = 2(
1 + cR̄(1)

b

) v̄L H (−x) ≡ κ̄ (1)v̄L H (−x), (79)

until there is a further change at the start of the next time interval [2τ, 3τ ].
The effect of the feedback in the next period would be to further reduce this
modified synthesis rate.

The solution for ã(x ; κ̄ (2)) = ã(2)(x) enables us to compute b̃(x ; κ̄ (2)) = b̃(2)(x)
and therewith

R̄(2)
b = 1

bh

√∫ 1

0

[
b̃(2)(x) − b̄(x)

]2
dx . (80)

With R̄(1)
b already known from (78) for the previous interval, (80) determines

R̄(2)
b to be used for adjusting the ligand synthesis rate in the next interval [2τ, 3τ ].
In general, near the end of the interval [(k − 1)τ, kτ ], the steady-state

solution ã(k)(x) appropriate for (k − 1)τ ≪ t ≤ kτ is again determined by (41)
and (42) but with

κ̄ ∼ κ̄ (k) = 2(
1 + cR̄(1)

b

) (
1 + cR̄(2)

b

)
· · ·

(
1 + cR̄(k−1)

b

) . (81)

and with

R̄(k)
b = 1

bh

√∫ 1

0

[
b̃(k)(x) − b̄(x)

]2
dx . (82)

The quantity R̄(k)
b is the (steady-state) robustness index for (k − 1)τ ≪ t ≤ kτ .

5.4.1. LRO approximation. For systems at LRO, the steady-state solution
for successive time intervals (k − 1)τ ≪ t ≤ kτ , k = 1, 2, 3 . . . can be written
down explicitly. This will be carried out for c = 1 later.

For k = 1, we have R̄(1)
b ∼ [r̄b]c=1 and correspondingly κ̄ (1) ∼ κ̄1 for

0 ≪ t ≤ τ , where r̄b(c) is as given by

R̄(1)
b ∼ r̄ (1)

b = γ (κ̄ (1) − 1) = γ ,

since r̄ (0)
b = R̄(0)

b = 0 and κ̄ (1) = κ̄1 = 2.
Similar calculations lead to the following results for (k − 1)τ ≪ t ≤ kτ for

general k:

R̄(k)
b ∼ r̄ (k)

b = (κ̄ (k) − 1)γ

b̃(k)(x) ∼ b0(x ; r (k)
b ) = b(k)

0 (x) = κ̄k ν̄L

α0µ
2
L

sinh(µL xm)
cosh(µL (1 + xm))

sinh(µL (1 − x))
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for 0 ≤ x ≤ 1, where

κ̄ (k) ≃ κ̄k = 2(
1 + r̄ (1)

b

)
· · ·

(
1 + r̄ (k−1)

b

) .

With κ̄ (1) = κ̄1 = 2, it is straightforward to prove by induction the following
proposition

PROPOSITION 7. κ̄k+1 = 2
2 − (1 − γ )k

, r̄ (k+1)
b = γ (1 − γ )k

2 − (1 − γ )k

It follows that κ̄k → 1 and r̄ (k)
b → 0 as k → ∞ so that b(k)

0 (x) tends to b̄(x)
for sufficiently large k.

5.4.2. Numerical results. Accurate numerical results for R̄(k)
b and b̃(k)(x)

obtained by solving (41)–(42) numerically without the LRO approximation
generally show that r̄ (k)

b and b(k)
0 (x) are accurate approximations of the

corresponding R̄(k)
b and b̃(k)

0 . As such, robustness generally is achieved eventually
(e.g., for t ≥ 3τ in the case of the illustrative example of Table 1). Biologically,
cell differentiation would have been completed after kτ for a relatively small
k. Even so, numerical solutions computed suggest that feedback with a long
delay is more likely to lead to robust signaling gradients if the time to cell
differentiation is considerably longer than the delay time.

6. Other new feedback mechanisms

Though the conventional Hill’s function-type negative feedback on receptor
synthesis rate proves to be ineffective against signaling gradient distortion [19, 18,
11],theresultsofprevioussectionssuggestthatsomefeedbackmechanismsmaystill
beeffective.Belowaresomeadditionalpossiblespatiallyuniformfeedbackcontrols
on a number of known regulatory processes that may promote robust signaling.
The corresponding spatially nonuniform feedback will be discussed elsewhere.

6.1. Positive feedback on ligand degradation

It has been observed that introduction of polypeptide noggin (encoded
by the NOG gene) binds and inactivates members of the transforming
growth factor-beta (TGF-beta) superfamily signaling proteins, such as bone
morphogenetic proteins (BMPs). At the same time, an ectopic concentration of
BMP causes significant upregulation of Sox9 and Noggin expression [21–23].
By-passing the processes of ligand upregulating noggin expression, we could
model, as it was done earlier in this paper, this reduction of available BMP
molecules very crudely by a negative feedback on ligand synthesis rate. In that
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case, the results of the previous sections apply. A somewhat more biologically
realistic feedback process would be a positive feedback on the degradation
rate constant kL as the reduction of ligand pertain to its concentration (and not
its synthesis rate). For such a model, we would keep the ligand synthesis
rate for both the wild-type and perturbed system unaffected by the robustness
index, but now with a positive feedback on the (free) ligand degradation rate.
Such a positive feedback control may be taken in the form:

kL = k̄l Rb(t − τ )
1 + Rb(t − τ )

with kL = 0 when R̄b = 0 given that ligand degradation is normally
receptor-mediated. The effect of such a feedback loop is being investigated.

6.2. Negative feedback on the signaling complex binding rate

It is also known that overexpression of Dad (Daughters against dpp) blocks
Dpp signaling activity (as seen from a lack of dpp target gene optomotor
blind [omb]) and there is a negative feedback circuit in which Dpp induces
expression of its own antagonist, Dad [33; 35]. (A similar observation has
been made on the BMP antagonist Chordin 24; 25.) One important signaling
activity that affects signaling gradient is the binding rate of the ligand with its
signaling receptor. For a possible model of this feedback loop, we may take

kon = k̄on

1 + cRb(t − τ )
,

again with both wild-type and ectopic synthesis rate unaffected by the
robustness index. Some interesting outcome from an investigation of such a
negative feedback mechanism will be reported separately.

6.3. Positive feedback on the nonreceptor synthesis rate

Certain nonreceptors molecules such as Dally (division abnormally delayed)
[47], FST (follistatin ([26–29], Sog (short gastrulation) [48; 30], and various
heparan sulfate proteoglycans [49] bind members of the BMP family and
prevent their interactions with signaling receptors, thereby inhibiting its
signaling. In fact, the previously mentioned BMP antagonists noggin and
chordin [23; 35] may be considered playing a similar role in BMP signaling.
As such, they may be seen as siphoning off the relevant morphogen to reduce
its concentration and activity in the extracellular space and are members of
the so-called “nonreceptors,” effective agents for reducing ectopic signaling
morphgen concentrations [19]. At the same time, the expression of these
nonreceptors is often stimulated and upregulated by BMP (see [22] for
example). This may be accomplished by a positive feedback on the nonreceptor
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synthesis rate VN (X, T ) (see [42]) in the form

VN (X, T ) = V̄N

[
1 + cRb(t − τ )

1 + Rb(t − τ )

]
≡ κN V̄N . (83)

Spatially uniform and nonuniform feedback mechanisms are being investigated
[40].

6.4. Other known signaling inhibiting processes

Other possible feedback controls may come from modeling the following
experimental observations:! Dpp represses the synthesis of its own receptor Tkv, which in turn enhances

Dpp destruction [50].! Wingless (Wg) represses its signaling receptor DFz2 but Dpp signaling
mediated by DFz2 leads to stabilization of Wg rather than degradation [31].! Positive feedback on receptor-mediated degradation rate [34].! Dlp (Dally-like) has opposite effects at high and low levels of Wingless.
Dlp promotes low-level Wingless activity but reduces high-level Wingless
activity [51].

In reality, robust signaling gradients in the presence of genetic and epigenetic
changes are likely to be the consequences of a combination of different
feedback activities including those mentioned above. However, appropriate
feedback processes may well depend on the existing ligand and signaling
receptor concentration. This is illustrated by how the effects of Dlp on Wg
activity depend of the level of Wg concentration [51]. Another example is the
different outcomes from an enhanced nonreceptor concentration observed in
[50] and [31] (see also [12]).

7. Concluding remarks

Robustness with respect to an ectopic signaling gradient resulting from genetic
or epigenetic perturbations requires one or more signaling-inhibiting agents
to be stimulated (by the enhanced signaling morphogen concentration) and
upregulated above their normal level. This means the existence of some kind of
feedback process in order to promote robustness. Feedback has long been seen
as a mechanism for maintaining stable developments and specific feedback
loops have been identified in the morphogen literature such as [5,35–38], and
elsewhere. Though the conventional Hill function-type negative feedback on
receptor synthesis rate proves to be ineffective for this purpose [19; 18; 11],
we have shown in this paper that a spatially uniform feedback process based
on a spanwise average of excess signaling can play such a role. With the two
algorithms developed for the solution of specific integro-differential equation
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system for such a feedback mechanism, the results obtained confirm that at
least one such feedback mechanism can be effective for ensuring robustness
and suggest that many other effective feedback mechanisms are also possible
and should be investigated.

Among the possible agents for achieving robustness that appear biologically
realistic, nonreceptors appear to be ubiquitous for downregulating signaling.
Such down-regulation has already been observed and investigated theoretically
in [11, 20]. Research on feedback processes for up-regulating nonreceptors
should be a high priority item. At the same time, other mechanisms for
down-regulating ectopic signaling are also known to exist. As such, feedback
controls other than nonreceptor-based process also require our attention. The
matter is further complicated by the fact that there are more than one feedback
processes for modeling the effect of each of these inhibiting agents and that the
effects of a particular mechanism may vary depending on existing conditions. All
these observations suggest that feedback as a mean for promoting and attaining
robustness of biological developments constitutes a rich area for theoretical
and empirical research. Some additional findings from our investigation of
this highly complex phenomenon will be reported in [40] and elsewhere.
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